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Abstract

Simulation-to-real transfer is an important strategy for making reinforcement
learning practical with real robots. Successful sim-to-real transfer systems have
difficulty producing policies which generalize across tasks, despite training for
thousands of hours equivalent real robot time. To address this challenge, we present
a novel approach to efficiently performing new robotic tasks directly on a real robot,
based on model-predictive control (MPC) and learned task representations. Rather
than end-to-end learning policies for single tasks in simulation and attempting to
transfer them, we use simulation to learn (1) an embedding function encoding a
latent representation of task components (skills), and (2) a single latent-conditioned
policy for all tasks, and directly transfer the frozen policy to the real robot. We then
use MPC to perform new tasks without any exploration in the real environment, by
choosing latent skill vectors to feed to the frozen policy, controlling the real system
in skill latent space. Our MPC model is the frozen skill latent-conditioned policy,
executed in the simulation environment, run in parallel with the real robot. In short,
we show how to reuse the simulation from the pre-training step of sim-to-real
methods as a tool for foresight, allowing the sim-to-real policy adapt to unseen
tasks. We discuss the background and principles of our method, detail its practical
implementation, and evaluate its performance by using our method to train a real
Sawyer Robot to achieve motion tasks such as drawing and block pushing.
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Figure 1: The Sawyer robot performing the reaching and task in simulation and real world

1 INTRODUCTION

Reinforcement learning algorithms have been proven to be effective to learn complex skills in
simulation environments in [1], [2] and [3]. However, practical robotic reinforcement learning for
complex motion skills remains a challenging and unsolved problem, due to the high number of
samples needed to train most algorithms and the expense of obtaining those samples from real
robots. Most existing approaches to robotic reinforcement learning either fail to generalize between
different tasks and among variations of single tasks, or only generalize by requiring collecting
impractical amounts of real robot experience. With recent advancements in robotic simulation, and
the widespread availability of large computational resources, a popular family of methods seeking to
address this challenge has emerged, known as “sim-to-real” methods. These methods seek to offload
most training time from real robots to offline simulations, which are trivially parallelizable and much
cheaper to operate. Our method combines this “sim-to-real” schema with representation learning
and model-predictive control (MPC) to make transfer more robust, and to significantly decrease the
number of simulation samples needed to train policies which achieve families of related tasks.

The key insight behind our method is that the simulation used in the pre-training step of a simulation-
to-real method can also be used online as a tool for foresight. It allows us to predict the behavior of a
known policy on an unseen task. When combined with a latent-conditioned policy, where the latent
actuates variations of useful policy behavior (i.e. skills), this simulation-as-foresight tool allows our
method to use what the robot has already learned to do (e.g. the pre-trained policy) to bootstrap
online policies for tasks it has never seen before. That is, given a latent space of useful skills, and a
simulation which predicts the rewards for those skills on a new task, we can reduce the adaptation
problem to intelligently choosing a sequence of latent skills which maximize rewards for the new
task.

2 BACKGROUND

Most simulation-to-real approaches so far have focused on addressing the “reality gap” problem.
The reality gap problem is the domain shift performance loss induced by differences in dynamics
and perception between the simulation (policy training) and real (policy execution) environments.
Training a policy only in a flawed simulation generally yields control behavior which is not adaptable
to even small variations in the environment dynamics. Furthermore, simulating the physics behind
many practical robotic problems (e.g. sliding friction and contact forces) is an open problem in
applied mathematics, meaning it is not possible to solve a completely accurate simulation for many
important robotic tasks [4]. Rather than attempt to create an explicit alignment between simulation
and real [5], or randomize our simulation training to a sufficient degree to learn a policy which
generalizes to nearby dynamics [6], our method seeks to learn a sufficient policy in simulation, and
adapt it quickly to the real world online during real robot execution.

Our proposed approach is based on four key components: reinforcement learning with policy gradients
(RL) [7], variational inference [8], model-predictive control (MPC), and physics simulation. We use
variational inference to learn a low-dimensional latent space of skills which are useful for tasks, and
RL to simultaneously learn single policy which is conditioned on these latent skills. The precise
long-horizon behavior of the policy for a given latent skill is difficult to predict, so we use MPC and
an online simulation to evaluate latent skill plans in simulation before executing them on the real
robot.
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3 RELATED WORK

Learning skill representations to aid in generalization has been proposed in works old and new.
Previous works proposed frameworks such as Associative Skill Memories [9] and probabilistic
movement primitives [10] to acquire a set of reusable skills. Our approach is built upon [11], which
learns a embedding space of skills with reinforcement learning and variational inference, and [12]
which shows that these learned skills are transferable and composable on real robots. While [12]
noted that predicting the behavior of latent skills is an obstacle to using this method, our approach
addresses the problem by using model-predictive control to successfully complete unseen tasks with
no fine-tuning on the real robot. Exploration is a key problem in robot learning, and our method
addresses this problem by drastically reducing the dimensionality of the exploration space, from
actions or parameters to a low-dimensional latent space of known-useful state-action sequences.
Using learned latent spaces to make exploration more tractable is also studied in [13] and [14]. Our
method exploits a latent space for task-oriented exploration: it uses model-predictive control and
simulation to choose latent skills which are locally-optimal for completing unseen tasks, then executes
those latent skills on the real robot.

Using reinforcement learning with model-predictive control has been explored previously. Kamthe et
al. [15] proposed using MPC to increase the data efficiency of reinforcement algorithms by training
probabilistic transition models for planning. In our work, we take a different approach by exploiting
our learned latent space and simulation directly to find policies for novel tasks online, rather than
learning and then solving a model.

Simulation-to-real transfer learning approaches include randomizing the dynamic parameters of
the simulation [6], and varying the visual appearance of the environment [16], both of which scale
linearly or quadratically the amount of computation needed to learn a transfer policy. Other strategies,
such as that of Barrett et al. [17] reuse models trained in simulation to make sim-to-real transfer
more efficient, similar to our method, however this work requires an explicit pre-defined mapping
between seen and unseen tasks. Saemundson et al. [18] use meta-learning and learned representations
to generalize from pre-trained seen tasks to unseen tasks, however their approach requires that the
unseen tasks be very similar to the pre-trained tasks, and is few-shot rather than zero-shot. Our
method is zero-shot with respect to real environment samples, and can be used to learn unseen tasks
which are significantly out-of-distribution, as well as for composing learned skills in the time domain
to achieve unseen tasks which are more complex than the underlying pre-trained task set.

Our work is closely related to simultaneous work performed by Co-Reyes et al. [19]. Whereas our
method learns an explicit skill representations using pre-chosen skills identified by a known ID, [19]
learn an implicit skill representation by clustering trajectories of states and rewards in a latent space.
Furthermore, we focus on MPC-based planning in the latent space to achieve robotic tasks online
with a real robot, while their analysis focuses on the machine learning behind this family of methods
and uses simulation experiments.

4 METHOD

4.1 Task Embedding Algorithm

In our multi-task RL setting, we pre-define a set of training tasks with IDs T = {1, . . . , N}, and
accompanying, per-task reward functions rt(s, a).

In parallel with learning the joint task policy πθ as in conventional RL, we learn an embedding
function pφ which encodes these tasks to a latent variable z. Note that the true task identity t is
hidden from the policy behind the embedding function pφ. Rather than reveal the task ID to the
policy, once per rollout we feed the task ID t, encoded as a one-hot vector, through the stochastic
embedding function pφ to produce a latent vector z. We feed this same value of z to the policy for
the entire rollout, so that all steps in a trajectory are correlated with the same value of z.

L(θ, φ, ψ) = max
π

Eπ(a,z|s,t)
t∈T

[ ∞∑
i=0

γir̂(si, ai, z, t)

∣∣∣∣si+1

]
+ α1Et∈T [H (pφ(z|t))] (1)

where

r̂(si, ai, z, t) = rt(si, ai) + α2 log qψ(z|(si, ai)H) + α3H (πθ(ai|si, z)) (2)
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In order to perform variational inference on the embedding function, we learn an inference function
qψ which, given a state-action trajectory window (si, ai)

H of length H , predicts the latent vector
z which was fed to the task policy when it produced that trajectory. This allows us to define an
augmented reward which encourages the policy to produce distinct trajectories for different latent
vectors. We learn qψ in parallel with the policy and embedding functions, as shown in Eq. 1.

We add a policy entropy bonus H (πθ(ai|si, z)), which ensures that the policy does not collapse to a
single solution for each skill. For a detailed derivation, refer to [11].

4.2 Latent Skill Space Criterion

In order for the learned latent space to be useful for completing unseen tasks, we seek to constrain
the embedding distribution to satisfy two important properties:

1. High entropy: Each task should induce a distribution over latent vectors which is wide as
possible, corresponding to many variations of a single skill.

2. Identifiability: Given an arbitrary trajectory window, the inference network should be able
to predict with high confidence the latent vector fed to the policy to produce that trajectory.

When applied together, these properties ensure that during training the policy is trained to encode
high-reward controllers for many parameterizations of a skill (high-entropy), while simultaneously
ensuring that each of these latent parameterizations corresponds to a distinct variation of that skill.
This dual constraint is the key for using model predictive control or other composing methods in the
latent space, as we discuss in Sec. 4.3.

Figure 2: Skill Embedding Algorithm and MPC

We train the policy and embedding networks using Proximal Policy Optimization [20], though our
method may be used by any parametric reinforcement learning algorithm. We use the MuJoCo
physics engine [21] to implement our Sawyer robot simulation environments. We represent the
policy, embedding, and inference functions using multivariate Gaussian distributions whose mean
and diagonal covariance are parameterized by the output of a multi-layer perceptron. The policy and
embedding distributions are jointly optimized by the reinforcement learning algorithm, while we
train the inference distribution using supervised learning and a simple cross-entropy loss. In practice,
to increase training stability, we omit actions from the trajectory snippets and use only states sHi for
inference.

4.3 Using Model Predictive Control for Zero-Shot Adaptation

To achieve unseen tasks on a real robot with no additional training, we freeze the latent multi-task
policy learned in Sec. 4.1, and use a new algorithm which we refer to as a “composer.” The composer
achieves unseen tasks by choosing new sequences of latent skill vectors to feed to the frozen latent-
conditioned policy. Exploring in this smaller space is faster and more sample-efficient, because
it encodes high-level properties of tasks and their relations. Each skill latent induces a different
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pre-learned skill, and our method reduces the adaptation problem to choosing sequences of these
pre-learned skills–continuously parameterized by the task embedding–to achieve new tasks.

Figure 3: Using model-predictive control with embedding functions and multi-task policy

Note that we use the simulation itself to evaluate the future outcome of the next action. For each step,
we set the state of the simulation environment to the observed state of the real environment. This
equips our robot with with the ability to predict the behavior of different skill latents. Since our robot
is trained in a simulation-to-real framework, we can reuse the simulation from the pre-training step
as a tool for foresight when adapting to unseen tasks. This allow us to select a latent skill online
which is locally-optimal for a task, even if that task was seen not during training. We show that this
scheme allows us to perform zero-shot task generalization and composition for families of related
tasks. This is in contrast to existing methods, which have mostly focused on direct alignment between
simulation and real, or data augmentation to generalize the policy using brute force. Despite much
work on simulation-to-real methods, neither of these approaches has demonstrated the ability to
provide the adaptation ability needed for general-purpose robots in the real world. We believe our
method provides a third path towards simulation-to-real adaptation that warrants exploration, as a
higher-level complement to these effective-but-limited existing approaches.

We denote the new task tnew corresponding to reward function rnew, the real environment in which
we attempt this task R(s′|s, a), and the RL discount factor γ. We use the simulation environment
S(s′|s, a), frozen task embedding pφ(z|t), and skill latent-conditioned policy πθ(a|s, z), all trained
in Sec. 4.1, to apply model-predictive control in the latent space as follows (Algorithm 1).

We first sample k candidate latents Z = {z1, . . . , zk} according to p(z) = Et∼p(t)pφ(z|t), and
observe the state sreal of real environmentR.

For each candidate latent zi, we set the initial state of the simulation S to sreal. For a horizon of T
time steps, we sample the frozen policy πθ, conditioned on the candidate latent aj∈T ∼ πθ(aj |sj , zi),
and execute the actions aj in the simulation environment S, yielding a total discounted reward
Rnew
i =

∑T
j=0 γ

jrnew(sj , aj) for each candidate latent. We then choose the candidate latent acquiring
the highest reward z∗ = argmaxiR

new
i , and use it to condition and sample the frozen policy

al∈N ∼ πθ(aj |sj , z∗) to control the real environment R for a horizon of N < T time steps. We
repeat this MPC process to choose and execute new latents in sequence, until the task has been
achieved.

The choice of MPC horizon T has a significant effect on the performance of our approach. Since our
latent variable encodes a skill which only partially completes the task, executing a single skill for
too long unnecessarily penalizes a locally-useful skill for not being globally optimal. Hence, we set
the MPC horizon T to not more than twice the number of steps that a latent is actuated in the real
environment N .

5 EXPERIMENTS

We evaluate our approach by completing two sequencing tasks on a Sawyer robot: drawing a
sequence of points and pushing a box along a sequential path. For each of the experiments, the robot
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Algorithm 1 MPC in Skill Latent Space
Require: A latent-conditioned policy πθ(a|s, z), a skill embedding distribution pφ(z|t), a skill

distribution prior p(t), a simulation environment S(s′|s, a), a real environmentR(s′|s, a), a new
task tnew with associated reward function rnew(s, a), an RL discount factor γ, an MPC horizon T ,
and a real environment horizon N .
while tnew is not complete do

Sample Z = {z1, . . . , zk} ∼ p(z) where p(z) = Et∼p(t)pφ(z|t)
Observe sreal fromR
for zi ∈ Z do

Set inital state of S to sreal
for j ∈ {1, . . . , T} do

Sample aj ∼ πθ(aj |sj , zi)
Execute simulation sj+1 = S(sj , aj)

end for
Calculate Rnew

i =
∑T
j=0 γ

jrnew(sj , aj)
end for
Choose z∗ = argmaxzi R

new
i

for l ∈ {1, . . . , N} do
Sample al ∼ πθ(al|sl, z∗)
Execute real environment sl+1 = R(sl, aj)

end for
end while

must complete an overall task by sequencing skills learned during the embedding learning process.
Sequencing skills poses a challenge to conventional RL algorithms due to the sparsity of rewards
in sequencing tasks [22]. Because the agent only receives a reward for completing several correct
complex actions in a row, exploration under these sequencing tasks is very difficult for conventional
RL algorithms. By reusing the skills we have consolidated in the embedding space, we show a
high-level controller can effectively compose these skills in order to achieve such difficult sequencing
tasks.

5.1 Sawyer: Drawing a Sequence of Points

In this experiment, we ask the Sawyer Robot to move its end-effector to a sequence of points in 3D
space. We first learn the low level policy that receives an observation with the robot’s seven joint
angles as well as the Cartesian position of the robot’s gripper, and output incremental joint positions
(up to 0.04 rads) as actions. We use the Euclidean distance between the gripper position and the
current target is used as the cost function. We trained the policy and the embedding network on
eight goal positions in simulation, forming a 3D rectoid enclosing the workspace. Then, we use the
model-predictive control to choose a sequence latent vector which allows the robot to draw an unseen
shape. For both simulation and real robot experiments, we attempted two unseen tasks: drawing a
rectangle in 3D space (Figs. 4 and 6) and drawing a triangle in 3D space (Figs. 5 and 7).
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Figure 4: Gripper position plots for the unseen rectangle-drawing experiment in simulation. In this
experiment, the unseen task is drawing a rectangle in 3D space.

6



0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625

−0.3

−0.2

−0.1

0.0

0.1

x-y plane
target
gripper
gripper start

0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625
0.05

0.10

0.15

0.20

0.25

0.30

x-z plane

target
gripper
gripper start

−0.3 −0.2 −0.1 0.0 0.1
0.05

0.10

0.15

0.20

0.25

0.30

y-z plane
target
gripper
gripper start

Figure 5: Gripper position plots in unseen triangle-drawing experiment in simulation. In this
experiment, the unseen task is to move the gripper to draw a triangle.
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Figure 6: Gripper position plots for the rectangle-drawing experiment on the real robot. In this
experiment, the unseen task is to draw a triangle.
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Figure 7: Gripper position plots in unseen triangle-drawing experiment on the real robot. In this
experiment, the unseen task it to move the gripper to draw a triangle.

5.2 Sawyer: Pushing the Box through a Sequence of Waypoints

In this experiment, we test our approach with a task that requires contact between the Sawyer Robot
and an object. We ask the robot to push a box along a sequence of points in the table plane. We
choose the Euclidean distance between the position of the box and the current target position as the
reward function. The policy receives a state observation with the relative position vector between the
robot’s gripper and the box’s centroid and outputs incremental gripper movements (up to ±0.03 cm)
as actions.
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Figure 8: Plot of block positions and gripper positions in simulation (left two) and real robot
experiments (right two). In experiment I, the robot pushes the box to the right, up and then left. In
experiment II, the robot pushes the box to the left, then up, and then back to its starting position. In
experiment III, the robot pushes the box to the left, and then down. In experiment IV, the robot push
the box to the up, and then left.

We first pre-train a policy to push the box to four goal locations relative to its starting position in
simulation. We trained the low-level multi-task policy with four tasks in simulation: 20 cm up, down,
left, and right of the box starting position. We then use the model-predictive control to choose a latent
vectors and feed it with the state observation to frozen multi-task policy which controls the robot.

For both simulation and real robot experiments, we use the simulation as a model of the environments.
In the simulation experiments, we use model-predictive controller to push the box to three points.
In the real robot experiments, we ask the Sawyer Robot to complete two unseen tasks: pushing
up-then-left and pushing left-then-down.

6 RESULTS

6.1 Sawyer Drawing

In the unseen drawing experiments, we sampled k = 15 vectors from the skill latent distribution, and
for each of them performed an MPC optimization with a horizon of T = 4 steps. We then execute the
latent with highest reward for N = 2 steps on the target robot. In simulation experiments, the Sawyer
Robot successfully draws a rectangle by sequencing 54 skill latents (Fig. 2) and drew by sequencing
a triangle with 56 skill latents (Fig. 3). In the real robot experiments, the Sawyer Robot successfully
completed the unseen rectangle-drawing task by choosing 62 skill latents (Fig. 4) in 2 minutes of
wall clock time and completed the unseen triangle-drawing task by choosing 53 skill latents (Fig. 5)
in less than 2 minutes of wall clock time.

6.2 Sawyer Pusher Sequencing

In the pusher sequencing experiments, we sample k = 50 vectors from the latent distribution. We use
an MPC optimization with a simulation horizon of T = 30 steps, and execute each chosen latent in
the environment for N = 10 steps. In simulation experiments, the robot completed the unseen up-left
task less than 30 seconds of equivalent wall clock time and the unseen right-up-left task less than 40
seconds of equivalent wall clock time. In the real robot experiments, the robot successfully completed
the unseen left-down task by choosing 3 skill latents over approximately 1 minute of wall clock time,
and the unseen push up-left task by choosing 8 skill latents in about 1.5 minutes of wall clock time.

6.3 Analysis

These experiment results show that our learned skills are composable to complete the new task. In
comparison with performing a search as done in [12], our approach is faster in wall clock time because
we perform the model prediction in simulation instead of on the real robot. Note that our approach
can utilize the continuous space of latents, whereas previous search methods only use an artificial
discretization of the continuous latent space. In the unseen box-pushing real robot experiment (Fig.
7, Right), the Sawyer robot pushes the box towards the bottom-right right of the workspace to fix
an error it made earlier in the task. This intelligent reactive behavior was never explicitly trained
during the pre-training in simulation process. This shows that by sampling from our latent space,
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the model-predictive controller exhibits adaptive behavior which was not seen during the training
process.

7 CONCLUSION

In this work, we combine task representation learning, simulation-to-real training, and model-
predictive control to efficiently adapt to unseen tasks with no additional on-robot training or ex-
ploration. Our experiments show that applying model predictive control to these learned skill
representations can be a efficient method for online adaptation. The tasks the robot is able to perform
using our method are more complex than the underlying pre-trained tasks used to achieve them, and
the behaviors exhibited by our robot while executing unseen tasks were more adaptive than demanded
by the simple reward functions used during pre-training. Our method provides a partial escape
from the reality gap problem in simulation-to-real methods, by mixing simulation-based long-range
foresight with locally-optimal online behavior.

For future work, we hope to apply our method as part of an algorithm for continual learning, and
to explore using it to guide exploration for more general reinforcement learning algorithms such as
DDPG. We are particularly excited about the potential of skill embeddings to enable for efficient
online learning a policy with real robots.
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